首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   7篇
  国内免费   2篇
测绘学   6篇
大气科学   1篇
地球物理   19篇
地质学   36篇
海洋学   5篇
自然地理   2篇
  2022年   3篇
  2021年   2篇
  2020年   6篇
  2019年   6篇
  2018年   8篇
  2017年   8篇
  2016年   8篇
  2015年   4篇
  2014年   5篇
  2013年   6篇
  2012年   5篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2006年   1篇
  2001年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
21.
A strategic approach is presented for future groundwater reservoir planning in arid regions where the evaluation of groundwater resources is restricted by scarcity of rainfall, data paucity, restrictive and unrepresentative methodologies, weak economies, almost nonexisting management and optimization programs, frequent groundwater quality variables along short distances, etc. This paper explains the necessary steps in preparing an effective strategic planning program that is expected to provide all the necessary data for identifying alternative solution scenarios especially in arid regions. It is shown on the basis of available scarce data that the risk model of these factors appears as the logarithmic normal probability distribution. The basic decision variables in groundwater storage and recharge planning are furnished with application to Wadi Fatimah in the western central part of the Kingdom of Saudi Arabia along the Red Sea coast. The approach given in this paper provides a basic example for future groundwater reservoir strategic use and management studies in the Kingdom in particular and in any part of the arid regions of the world, in general.  相似文献   
22.
Geotechnical engineering and unpredictable piling problems of highly urbanized areas underlain by intensive geological fracture zones require a better understanding of their spatial pattern and developments. Unlike traditional techniques which use geophysical survey and visual interpretation of optical satellite images, this study presents a modified approach to revealing the buried geological fractures in karst terrain, which incorporates Wood??s algorithm. The algorithm binary maps were modified by applying additional Soble filter with 10% threshold and equalization enhancement. These modifications have proven good discrimination for morphological linear and curvilinear derived from DEM. Results of the modified method were compared to the existing geological map and validated by conducting field observations. The analysis of the results and corresponding geological and topographical maps showed the effectiveness of the method to recognize the pattern of buried geological fractures. The results obtained demonstrated that maps of the modified method can be used as a reference map prior to any site investigation.  相似文献   
23.
24.
Various methods to control scour around bridge piers have been proposed.In the present study the application of cable or collar and a combination of cable and collar were examined experimentally,as countermeasures against local scouring at a smooth circular bridge pier,close to threshold flow conditions of initiation of uniform sediment motion.The results show that the simultaneous use of cable and collar has high efficiency in reducing the scour depth.The best configuration was found for a cable-pier diameter ratio of 0.15 and thread angle of 15°,in which the scour depth in upstream of the pier reduced to about 53%.In the case of a pier protected with cable and collar the scouring postponed more than pier protected with collar and the rate of scouring is less than in pier protected with collar.These advantages can reduce the risk of pier failure when the duration of flood is short. The results indicate that the scour reduction increases as the cable diameter increased and the thread angle decreased.  相似文献   
25.
Stope stability is a key factor for the success of a mining operation. To optimise ore productivity while maintaining stope stability, the mining block/stope must be extracted in stages. Ore dilution will occur if the stope is not properly excavated/blasted. This study examines stope stability during mining in three stages, where the height of each stage stope is 10 m. The paper also presents simulation analysis of a typical steeply dipping tabular orebody at 1200 m depth below the surface, which is common in many Canadian underground hard rock mines. Numerical modelling analysis was conducted using the finite element program, RS2D, where the non-linear elasto-plastic Mohr-Coulomb failure criterion was adopted. The rock reinforcement system (i.e. cable bolts) was modelled/installed in the stope footwall after each mining stage to strengthen access drifts and stabilise the rock mass around the stope that was disturbed by mining activity. Results are discussed in terms of depth of failure zones, total deformation and axial forces in cable bolts with respect to mining stage.  相似文献   
26.
Natural Hazards - Many parts of Upper Egypt as Sinai and Red Sea areas were hit by severe flash floods since 1976. Wadi Qena is considered one of the most watersheds that suffers from floods in Red...  相似文献   
27.
In this paper reduction of scour around group of two and three piers using circular collar has been carried out for the case of clear-water flow over uniform sediment. The efficiency of collars, with different sizes and spaces between piers is studied through experiments in group of two and three piers. The result reveals that collar has more influence in reduction of scour depth in rear piers than the first pier. Also, when the spacing between the piers increases the area without protection between the piers is washed away resulting deeper scour holes at the rear piers.  相似文献   
28.
Sustainable management and exploitation policies as well as suitable conservation and mitigation strategies are mandatory to preserve cultural heritage and to reduce threats, weathering phenomena, and human actions that may produce significant deterioration and alteration of cultural heritage and “its environment”. In this context, remote sensing technologies can offer useful data to timely update information and documentation and set up reliable tools for systematic monitoring of cultural properties. In this study, multi-temporal and multi-sensor satellite data from Corona, Landsat, Spot, Quickbird, and Sentinel-2A have been exploited along with spatial analysis to investigate the area of the Theban temples at west Luxor (Egypt), severely threatened by uncontrolled urban sprawl. The results from our analyses showed that the urban expansion continuously occurred during the whole investigated period causing an increasing in urban areas around (1) 1.316 km2 from 1967 to 1984, (2) 1.705 km2 from 1984 to 2000, (3) 0.978 km2 from 2000 to 2003, (4) 2.314 km2 from 2003 to 2011, and (5) 1.377 km2 from 2011 to 2017. The random urban expansion caused bad sewage networks and high groundwater depth which in turn affected the archaeological areas directly (as evident on a landscape view) and indirectly by causing changes (growing) in the level of ground water depth and increasing and accelerating weathering phenomena. The quantification and mapping of urban sprawl enabled us not only to quantify and spatially characterize urban sprawl but also to create a model to mitigate the impact and provide some operational recommendations to protect the archaeological site. Outcomes from our analysis pointed out that today the tremendous availability of advanced remote sensing data has opened new prospectives unthinkable several years ago.  相似文献   
29.
As a result of population growth and consequent urbanization, the number of high‐rise buildings is rapidly growing worldwide resulting in increased exposure to multiple‐scenario earthquakes and associated risk. The wide range in frequency contents of possible strong ground motions can have an impact on the seismic response, vulnerability and limit states definitions of RC high‐rise wall structures. Motivated by the pressing need to derive more accurate fragility relations to be used in seismic risk assessment and mitigation of such structures, a methodology is proposed to obtain reliable, Seismic Scenario‐Structure‐Based (SSSB) definitions of limit state criteria. A 30‐story wall building, located in a multi‐seismic scenario study region, is utilized to illustrate the methodology. The building is designed following modern codes and then modeled using nonlinear fiber‐based approach. Uncertainty in ground motions is accounted for by the selection of forty real earthquake records representing two seismic scenarios. Seismic scenario‐based building local response at increasing earthquake intensities is mapped using Multi‐Record Incremental Dynamic Analyses (MRIDAs) with a new scalar intensity measure. Net Inter‐Story Drift (NISD) is selected as a global damage measure based on a parametric study involving seven buildings ranging from 20 to 50 stories. This damage measure is used to link local damage events, including shear, to global response under different seismic scenarios. While the study concludes by proposing SSSB limit state criteria for the sample building, the proposed methodology arrives at a reliable definition of limit state criteria for an inventory of RC high‐rise wall buildings under multiple earthquake scenarios. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
30.
Many of the applied techniques in water resources management can be directly or indirectly influenced by hydro-climatology predictions. In recent decades, utilizing the large scale climate variables as predictors of hydrological phenomena and downscaling numerical weather ensemble forecasts has revolutionized the long-lead predictions. In this study, two types of rainfall prediction models are developed to predict the rainfall of the Zayandehrood dam basin located in the central part of Iran. The first seasonal model is based on large scale climate signals data around the world. In order to determine the inputs of the seasonal rainfall prediction model, the correlation coefficient analysis and the new Gamma Test (GT) method are utilized. Comparison of modelling results shows that the Gamma test method improves the Nash–Sutcliffe efficiency coefficient of modelling performance as 8% and 10% for dry and wet seasons, respectively. In this study, Support Vector Machine (SVM) model for predicting rainfall in the region has been used and its results are compared with the benchmark models such as K-nearest neighbours (KNN) and Artificial Neural Network (ANN). The results show better performance of the SVM model at testing stage. In the second model, statistical downscaling model (SDSM) as a popular downscaling tool has been used. In this model, using the outputs from GCM, the rainfall of Zayandehrood dam is projected under two climate change scenarios. Most effective variables have been identified among 26 predictor variables. Comparison of the results of the two models shows that the developed SVM model has lesser errors in monthly rainfall estimation. The results show that the rainfall in the future wet periods are more than historical values and it is lower than historical values in the dry periods. The highest monthly uncertainty of future rainfall occurs in March and the lowest in July.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号